2521/203 2602/202 2601/202 2603/202 DIGITAL AND ANALOGUE ELECTRONICS II Oct./Nov. 2022

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE H

DIGITAL AND ANALOGUE ELECTRONICS II

hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/non-programmable scientific calculator;

This paper consists of EIGHT questions in TWO sections, A and B.

Answer any TWO questions from section A, and any THREE questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages and one insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ANALOGUE ELECTRONICS II

Answer any TWO questions from this section.

(a) State any two areas of application of liquid crystal displays (LCDs). (i) row I bisday or dianos

Differentiate the operating principles of the following types of LCDs when (ii) energised:

field effect display; - swinger the comments with a re-city of region (I)

dynamic scattering. Such age crowners on spectrom so trace is a (II)

(6 marks)

With the aid of a diagram, explain the construction of a light emitting diode (LED).

(5 marks) Explain how the Zener diode maintains a constant output voltage despite the variations in input voltage.

is the true it of a consist the count is during Figure 1 shows a circuit diagram of a Zener shunt regulator. The Zener diode used in the circuit has a breakdown voltage of 5.1 V, a Zener resistance r, of $10\,\Omega$ and the minimum and maximum values of Zener currents are 1 mA and 15 mA respectively. Determine the minimum and maximum values of the input voltage which can be regulated. (9 marks)

Fig. 1

Iz (mar) = RE

(a) State two:

> (i) ways of connecting feedback amplifiers;

(ii) merits of negative feedback connection.

- HOUSE 1- SOURTH - Loss Sucreital ingres

(4 marks)

With the aid of a circuit diagram explain the operation of an RC-phase shift (b) oscillator circuit.

(8 marks)

2521/203 2602/202 2601/202 2602/202 Oct/Nov. 2022

- (c) (i) A FET phase shift oscillator uses three identical RC sections in the feedback network. The values of the components are $R=100\,k\Omega$ and $C=0.01\,\mu F$. Determine the frequency of oscillations.
 - (ii) A Hartley oscillator is designed with L₁ = 2 mH, L₂ = 20 μH. Determine the value of capacitance if the frequency of oscillation is 2 MHz.
 - (iii) State two applications of oscillators.

(8 marks)

- (a) (i) State two characteristics of an ideal OP-Amp.
 - (ii) Using a circuit diagram, show that the gain of an inverting amplifier is given by the expression:

$$A_v = \frac{-R_2}{R_1}$$

(7 marks)

(b) Figure 2 shows an OP-Amp based summer. Determine the value of output voltage. (3 marks)

Fig. 2

- (c) A transistor used in CB circuit has the following set of parameters: h_{ib} = 36 Ω, h_{fb} = -0.98, h_{rb} = 5 × 10⁻⁴, h_{co} = 10⁻⁶ siemens. With R_i = 2 k Ω and R_c = 10 kΩ. Calculate:
 - (i) Yin(base);
 - (ii) γ_{out};
 - (iii) A_t;
 - (iv) A.

(10 marks)

SECTION B: DIGITAL ELECTRONICS

Answer any THREE questions from this section.

(a) State two methods of error detection.

(2 marks)

- (b) (i) State two advantages of using complement method of substraction.
 - (ii) Using 2's complement, solve $17_{10} 26_{10}$.
 - Using 1's complement, perform the arithmetic 1F₁₆-B₁₆.

(9 marks)

- (c) Using logic diagrams, illustrate how NOR gates can be used to generate the following functions:
 - (i) NOT operation;
 - (ii) AND operation;
 - (iii) OR operation.

(9 marks)

- (a) Perform each of the following:
 - (i) convert 26A₁₆ to binary;
 - (ii) multiply 101.012 by 11.12;
 - (iii) convert binary number 11011011 to its Gray code equivalent.
 - (iv) add 8₁₀ to 6₁₀ in Excess 3 code and express the answer in Excess 3 code.

(9 marks)

(b) Figure 3 shows a logic circuit diagram of a logical network. Obtain the minimized expression of the output F. (4 marks)

Fig. 3

- (c) Using Boolean rules, simplify the expression F = (A+B)(B+C).
 - (ii) Draw the logic circuit diagram for the simplified expression in c (i).

(7 marks)

(a) Table 1 shows the classification of logic families.

Table 1

Category	No. of equivalent basic logic gates on a single chip
1	12 - 99
2	100 - 999
2	10,000 and above

Name the corresponding category of the logic families.

(3 marks)

- (b) With the aid of NAND gate based circuit diagram, explain the operation of an edge triggered J - K flip flop. (7 marks)
- (c) (i) State any two performance characteristics of ECL gates.
 - (ii) With the aid of a circuit diagram, explain why a TTL gate with a totem pole output should not be wire ANDed.
 - (iii) State and explain a remedy to the situation in c (ii).

(10 marks)

- (a) (i) Define each of the following with respect to digital to analogue converters:
 - (I) resolution;
 - (II) speed.
 - (ii) A 6 bit analogue to digital converter has a maximum precision supply voltage of 20 V. Determine the:
 - percentage resolution of the converter;
 - (II) analogue voltage represented by the least significant bit;
 - (III) analogue voltage equivalent to a digital output of 100110.

(8 marks)

- (b) (i) Draw the truth table of a binary half adder circuit.
 - (ii) Obtain the Boolean expression for the outputs of the adder in b (i).
 - (iii) Implement the expressions in b (ii) using logic gates.

(6 marks)

- (c) (i) State two advantages of MOSFET RAMs over BIPOLAR RAM memories.
 - Explain how an EPROM is erased and reprogrammed.

(6 marks)

(a) State any three applications of shift registers.

(3 marks)

- (b) With the aid of waveforms, explain the following terms as used in edge triggered flip flops:
 - (i) propagation delay (tpd);
 - (ii) set up time (ts);
 - (iii) hold time (tn).

(6 marks)

- (c) State the operational difference between synchronous and asynchronous counters.
 (2 marks)
- (d) With the aid of truth table, logic circuit diagram and waveforms illustrate the operation of a 3 - bit negative edge clocked ripple counter. (9 marks)

easylvet.com

THIS IS THE LAST PRINTED PAGE.