SECTION A: ANALOGUE ELECTRONICS II

Answer any TWO questions from this section.

- 1. (a) (i) State two advantages of a silicon controlled switch (SCS) over a silicon controlled rectifier (SCR).
 - (ii) Figure 1 shows a circuit diagram of an alarm system employing a silicon controlled switch. Describe its operation.

(6 marks)

- (b) With the aid of a circuit diagram, describe the operation of a discrete-component bistable multivibrator. (8 marks)
- (c) An LED has the following ratings: power output $P_0 = 0.42$ mW, forward current $I_F = 80$ mA and forward voltage $V_F = 1.22$ V. It is connected in series with a current limiting resistor and supplied from a 5V source. The light from the LED is projected onto a flat surface 2.54 cm away and forms a divergence angle of 0.524 radians. Determine the:
 - (i) value of the current limiting resistor;
 - (ii) area illuminated by the LED;
 - (iii) incident irradiance at the flat surface.

(6 marks)

- 2. (a) (i) State the **two** conditions necessary for oscillations to be sustained in a sinusoidal oscillator.
 - (ii) With the aid of a circuit diagram, describe the operation of a blocking oscillator.
 (10 marks)

- (b) An amplifier has a gain A = 100, input resistance $Ri = 2K\Omega$ and output resistance $Ro = 40 K\Omega$. Determine the following when it is connected as a voltage-series negative feedback amplifier with a feedback factor $\beta = \frac{1}{10}$:
 - (i) gain; $\int_{1+\sqrt{100}}^{4} \frac{100}{1+(100)} \frac{100}{11} = \frac{100}{11}$
 - (ii) input resistance;(iii) output resistance;
 - (iv) reduction in distortion;
 - (v) percentage change in gain with feedback if the gain without feedback changes by 20%.

(10 marks)

(7 marks)

- 3. (a) (i) Define the following with respect to operational amplifiers:
 - (I) input offset voltage; ~ \init 15
 - (II) slew rate; rote a charge a slope
 - (III) common-mode voltage gain. -
 - (ii) Figure 2 shows a circuit diagram of a first-order low-pass filter. Determine the:

- (b) Table 1 shows the data of the gain/frequency characteristic of a two-stage tuned radio frequency amplifier.
 - (i) Plot, on the same axis, the gain/frequency curves for:
 - (I) single stage;
 - (II) two stages.
 - (ii) From the curves, determine the bandwidth of the single stage and the two stages. (7 marks)

1536/12/11

Table 1

Frequency	950	960	970	980	000	1000					
	700	300	370	960	990	1000	1010	1020	1030	1040	1050
Gain of 1 stage	1,98	2.45	3.12	4.47	7.07	10	7.07	4.47	3.12	2.45	1.98
Gain of 2 stages	3.92	5.91	9.73	19.98	50	100	50	19.98	9.73	5.91	3.92

Show that the maximum theoretical efficiency of a class-B power amplifier is 78.54%. (c) (6 marks)

16 16 16 256 160 8 = 274

SECTION B: DIGITAL ELECTRONICS

F B4A

Answer any THREE questions from this section. Perform the following number system conversion:

11 /6 /6 162161/60 3072 256 16

(i) 1011101001₂ to decimal; (ii)

EB4A₁₆ to decimal

512 0 128 64 32 0 8 0 0 + 1

(6 marks)

Perform the following arithmetic operations in the given bases to

(i) $1011_{2} \times 101_{2}$ $1A8_{16} + 67B_{16}$

(ii)

(6 marks) 2

(c) Table 2 shows the ASC11 code for alphanumeric characters. Obtain the: (i)

> **(I)** code for the letter e;

0111001

decimal number represented by the code 0,11,1,001. (II)

BFF

01,010,110

21149

2521/203, 2602/202 2601/202, 2603/202 Oct./Nov. 2016

011110100+0101 111,0100,0101

Table 2

	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	P	. `	р
1	SOH	DC1	!	1	A 1	Q	а	q
2	STX	DC2	. 11	2	В	R	b	r
3	ETX	DC3	#	3	C	S	c	s
4	ЕОТ	DC4	\$	4	D	T	d	t
5,	ENQ	NAK	%	5	E	U	©	u
6	ACK	SYN	&	6	F	V	f	v
7	BEL	ETB	1	7	G	W	g	w
8	BS	CAN	(8	H	. X	h	x
9	HT	EM)	9	I	Y	i	у
Α	LF	SUB	•	:	J	Z	j	z
В	VT	ESC	+	;	K	[k	{
С	FF	FS	•	<	L	\	1	-
D	CR	GS	•	=	M]	m	}
E	so	RS	•	>	N	٨	n	~
F	SI	US	1	?	0	-	o	DEL

011001000111 0/00/00/0010

Add 647₁₀ to 492₁₀ in the 8421 BCD code. (ii)

√8 marks)

- (a) Define the following with respect to edge-triggered flip-flops: (i)
 - **(I)**
 - set-up time; this which af lifting is ment to operate hold-up time. is he time which a firting is ment to work befor orting (II)
 - (ii) With the aid of a logic diagram, describe the operation of a master-slave JK flip-flop when the clock is at logic 1 and makes a transition to logic 0. Assume the circuit is initially reset and the inputs

(9 marks) (b) (i) State two applications of binary counters

(ii) Figure 3 shows a logic diagram of a binary counter. Describe its operation for three clock pulses and draw the timing diagrams.

Draw the state diagram of a 4-bit Johnsons counter assuming that all the stages are in (c) the '0' state. (3 marks)

(a) Using Boolean algebra, simplify the equation

$$F = \overline{\overline{A}(B + \overline{C})}(A + \overline{B} + C)(\overline{\overline{A}\overline{B}\overline{C}})$$

(5 marks)

(10 marks)

M.

C

(b) A digital vending machine is to dispense beverage at a time as indicated:

Tea, milk and sugar c m S - 74
Coffee, milk and sugar c m S - Z

(i) Draw the truth table for the vending machine operation.

(iii) Implement the simplified expression in b(ii).

Figure 4 shows a logic diagram of a serial adder/subtractor connected to add two 4-bit binary numbers. Outline the sequence of adding the two numbers. (5 marks)

Fig. 4

- 7. (a) (i) Distinguish between random access memory (RAM) and read only memory (ROM). from Lead & access memory (RAM) and read only memory (ROM). from you can any read but we can be edit or delit from it
 - (ii) With the aid of a circuit diagram, explain how a programmable ROM is programmed.

(8 marks)

(b) With the aid of a labelled block diagram, describe the operation of a ramp-type analog-to-digital converter. (8 marks)

(c)

(c) Figure 5 shows a circuit diagram of a weighted resistor digital-to-analog converter.

Determine the value of the output voltage, Vo. (4 marks)

Fig. 5

- 8. (a) (i) State the packaging density of the following ICs:
 - (I) medium scale integration;
 - (II) very large scale integration.
 - (ii) With the aid of a circuit diagram, describe the operation of a two-input CMOS NOR gate.

(10 marks)

(b) Figure 6 shows a circuit diagram of a transistor switch. If $V_{be} = 0.6V$, $V_{ce(sat)} = 0.2V$ and $\beta = 50$; determine the value of the base resistance at which the transistor will saturate. (10 marks)

THIS IS THE LAST PRINTED PAGE.